The Hopf Algebra of Non-commutative Symmetric Functions and Quasi-symmetric Functions Are Free and Cofree

نویسنده

  • N. BERGERON
چکیده

We uncover the structure of the space of symmetric functions in non-commutative variables by showing that the underlined Hopf algebra is both free and co-free. We also introduce the Hopf algebra of quasi-symmetric functions in non-commutative variables and define the product and coproduct on the monomial basis of this space and show that this Hopf algebra is free and cofree. In the process of looking for bases which generate the space we define orders on the set partitions and set compositions which allow us to define bases which have simple and natural rules for the product of basis elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hopf Algebras of Symmetric Functions and Quasisymmetric Functions in Non-commutative Variables Are Free and Cofree

We uncover the structure of the space of symmetric functions in non-commutative variables by showing that the underlined Hopf algebra is both free and co-free. We also introduce the Hopf algebra of quasi-symmetric functions in non-commutative variables and define the product and coproduct on the monomial basis of this space and show that this Hopf algebra is free and cofree. In the process of l...

متن کامل

The Hopf Algebras of Non-commutative Symmetric Functions and Quasisymmetric Function Are Free and Cofree

We uncover the structure of the space of symmetric functions in non-commutative variables by showing that the underlined Hopf algebra is both free and co-free. We also introduce the Hopf algebra of quasi-symmetric functions in non-commutative variables and define the product and coproduct on the monomial basis of this space and show that this Hopf algebra is free and cofree. In the process of l...

متن کامل

Structure of the Malvenuto-reutenauer Hopf Algebra of Permutations

We analyze the structure of the Malvenuto-Reutenauer Hopf algebraSSym of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration, and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. In addition, we describe the structure constants of the...

متن کامل

The Hopf Algebra of Uniform Block Permutations. Extended Abstract

Abstract. We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Ge...

متن کامل

Cocommutative Hopf Algebras of Permutations and Trees

Consider the coradical filtration of the Hopf algebras of planar binary trees of Loday and Ronco and of permutations of Malvenuto and Reutenauer. We show that the associated graded Hopf algebras are dual to the cocommutative Hopf algebras introduced in the late 1980’s by Grossman and Larson. These Hopf algebras are constructed from ordered trees and heap-ordered trees, respectively. We also sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005